Long-Term Benefits of Cenchrus fungigraminus Residual Roots Improved the Quality and Microbial Diversity of Rhizosphere Sandy Soil through Cellulose Degradation in the Ulan Buh Desert, Northwest China

Author:

Li Jing12,Zhang Lili12,Yu Shikui1,Luo Zongzhi1,Su Dewei1,Zheng Dan1,Zhou Hengyu12,Zhu Jieyi13,Lin Xingsheng12,Luo Hailing12,Rensing Christopher14ORCID,Lin Zhanxi12,Lin Dongmei12

Affiliation:

1. National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. College of Juncao and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4. Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Long-term plant residue retention can effectively replenish soil quality and fertility. In this study, we collected rhizosphere soil from the residual roots of annual Cenchrus fungigraminus in the Ulan Buh Desert over the past 10 years. The area, depth, and length of these roots decreased over time. The cellulose content of the residual roots was significantly higher in the later 5 years (2018–2022) than the former 5 years (2013–2017), reaching its highest value in 2021. The lignin content of the residual roots did not differ across samples except in 2015 and reached its highest level in 2021. The total sugar of the residual roots in 2022 was 227.88 ± 30.69 mg·g−1, which was significantly higher than that in other years. Compared to the original sandy soil, the soil organic matter and soil microbial biomass carbon (SMBC) contents were 2.17–2.41 times and 31.52–35.58% higher in the later 3 years (2020–2022) and reached the highest values in 2020. The residual roots also significantly enhanced the soil carbon stocks from 2018–2022. Soil dehydrogenase, nitrogenase, and N-acetyl-β-D-glucosidase (S-NAG) were significantly affected from 2019–2022. The rhizosphere soil community richness and diversity of the bacterial and fungal communities significantly decreased with the duration of the residual roots in the sandy soil, and there was a significant difference for 10 years. Streptomyces, Bacillus, and Sphigomonas were the representative bacteria in the residual root rhizosphere soil, while Agaricales and Panaeolus were the enriched fungal genera. The distance-based redundancy analysis and partial least square path model results showed that the duration of residual roots in the sandy soil, S-NAG, and SMBC were the primary environmental characteristics that shaped the microbial community. These insights provide new ideas on how to foster the exploration of the use of annual herbaceous plants for sandy soil improvement in the future.

Funder

Department of Agriculture and Rural Affairs of Fujian Province

National Engineering Research Center of Juncao Technology and Provincial and Ministry Collaborative Innovation Center for Juncao Ecological Industry

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3