Multichannel high noise level ECG denoising based on adversarial deep learning

Author:

Mvuh Franck Lino,Ebode Ko’a Claude Odile Vanessa,Bodo Bertrand

Abstract

AbstractThis paper proposes a denoising method based on an adversarial deep learning approach for the post-processing of multi-channel fetal electrocardiogram (ECG) signals. As it’s well known, noise leads to misinterpretations of fetal ECG signals and thus limits the use of fetal electrocardiography for healthcare applications. Therefore, denoising algorithms are essential for the exploitation of non-invasive fetal ECG. The proposed method is based on the combination of three end-to-end trained sub-networks to convert noisy fetal ECG signals into clean signals. The first two sub-networks are linked by skip connections and form a deep convolutional network that downsamples the noisy signals into a latent representation and subsequently upsamples this latent representation to recover clean signals. The third sub-network aims to boost the decoder sub-network to generate realistic clean signals. Experiments carried out on synthetic and real data showed that the proposed method improved by the signal-to-noise (SNR) of fetal ECG signals with input SNR ranging from $$-\,30$$ - 30 to 0 dB by an average of 20 dB, and improve fetal signal quality by significantly increasing the number of true detected QRS complexes and halving QRS complex detection errors.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3