Author:
Khatar Zakaria,Bentaleb Dounia,El Mansouri M’hamed
Publisher
Springer Nature Switzerland
Reference18 articles.
1. Pradhan, B.K., Neelappu, B.C., Sivaraman, J., Kim, D., Pal, K.: A review on the applications of time-frequency methods in ECG analysis. J. Healthc. Eng. 2023, 1–24 (2023)
2. Chen, Y., Zhang, H., Li, P.: A novel ECG enhancement and QRS detection scheme based on the 1-D high-order non-convex total variation denoising. Circ. Syst. Signal Process. 42(9), 5385–5411 (2023)
3. Shamaee, Z., Mivehchy, M.: Dominant noise-aided emd (demd): extending empirical mode decomposition for noise reduction by incorporating dominant noise and deep classification. Biomed. Signal Process. Control 80, 104218 (2023)
4. Li, Y., et al.: A deep learning approach to cardiovascular disease classification using empirical mode decomposition for ECG feature extraction. Biomed. Signal Process. Control 79, 104188 (2023)
5. Ryu, S., Choi, H., Lee, H., Kim, H.: Convolutional autoencoder based feature extraction and clustering for customer load analysis. IEEE Trans. Power Syst. 35(2), 1048–1060 (2019)