Evaluating the impacts of digital ECG denoising on the interpretive capabilities of healthcare professionals

Author:

McKenna Stacey1ORCID,McCord Naomi1,Diven Jordan1,Fitzpatrick Matthew1ORCID,Easlea Holly1,Gibbs Austin2ORCID,Mitchell Andrew R J2ORCID

Affiliation:

1. B-Secur Ltd , City Quays 3, 92 Donegall Quay, BT1 3FE Belfast , N. Ireland

2. The Allan Lab, Jersey General Hospital , St Helier , Jersey

Abstract

Abstract Aims Electrocardiogram (ECG) interpretation is an essential skill across multiple medical disciplines; yet, studies have consistently identified deficiencies in the interpretive performance of healthcare professionals linked to a variety of educational and technological factors. Despite the established correlation between noise interference and erroneous diagnoses, research evaluating the impacts of digital denoising software on clinical ECG interpretation proficiency is lacking. Methods and results Forty-eight participants from a variety of medical professions and experience levels were prospectively recruited for this study. Participants’ capabilities in classifying common cardiac rhythms were evaluated using a sequential blinded and semi-blinded interpretation protocol on a challenging set of single-lead ECG signals (42 × 10 s) pre- and post-denoising with robust, cloud-based ECG processing software. Participants’ ECG rhythm interpretation performance was greatest when raw and denoised signals were viewed in a combined format that enabled comparative evaluation. The combined view resulted in a 4.9% increase in mean rhythm classification accuracy (raw: 75.7% ± 14.5% vs. combined: 80.6% ± 12.5%, P = 0.0087), a 6.2% improvement in mean five-point graded confidence score (raw: 4.05 ± 0.58 vs. combined: 4.30 ± 0.48, P < 0.001), and 9.7% reduction in the mean proportion of undiagnosable data (raw: 14.2% ± 8.2% vs. combined: 4.5% ± 2.4%, P < 0.001), relative to raw signals alone. Participants also had a predominantly positive perception of denoising as it related to revealing previously unseen pathologies, improving ECG readability, and reducing time to diagnosis. Conclusion Our findings have demonstrated that digital denoising software improves the efficacy of rhythm interpretation on single-lead ECGs, particularly when raw and denoised signals are provided in a combined viewing format, warranting further investigation into the impact of such technology on clinical decision-making and patient outcomes.

Funder

B-Secur Ltd

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3