Rapid Sensing of Key Quality Components in Black Tea Fermentation Using Electrical Characteristics Coupled to Variables Selection Algorithms

Author:

Dong Chunwang,An Ting,Zhu Hongkai,Wang Jinjin,Hu Bin,Jiang Yongwen,Yang Yanqin,Li Jia

Abstract

AbstractBased on the electrical characteristic detection technology, the quantitative prediction models of sensory score and physical and chemical quality Index (theaflavins, thearubigins, and theabrownins) were established by using the fermented products of Congou black tea as the research object. The variation law of electrical parameters during the process of fermentation and the effects of different standardized pretreatment methods and variable optimization methods on the models were discussed. The results showed that the electrical parameters vary regularly with the test frequency and fermentation time, and the substances that hinder the charge transfer increase gradually during the fermentation process. The Zero-mean normalization (Zscore) preprocessing method had the best noise reduction effect, and the prediction set correlation coefficient (Rp) value of the original data could be increased from 0.172 to 0.842. The mixed variable optimization method (MCUVE-CARS) of Monte Carlo uninformed variable elimination (MC UVE) and competitive adaptive reweighted sampling (CARS) was proved that the characteristic electrical parameters were the loss factor (D) and reactance (X) of the low range. Based on the characteristic variables screened by MCUVE-CARS, the quantitative prediction models for each fermentation quality indicator were established. The Rp values of the sensory score, theaflavin, thearubigin and theabrownins of the predicted models were 0.924, 0.811, 0.85 and 0.938 respectively. The relative percent deviation (RPD) values of the sensory score, theaflavins, thearubigins and theabrownins of the predicted models were 2.593, 1.517, 1,851 and 2.920 respectively, and it showed that these models have good performance and could realize quantitative characterization of key fermentation quality indexes.

Funder

Natural Science Foundation of Zhejiang Province

Special Fund for Agro-scientific Research in the Public Interest

the National Key Research and Development Program of Chin

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3