Author:
Dong Chunwang,An Ting,Zhu Hongkai,Wang Jinjin,Hu Bin,Jiang Yongwen,Yang Yanqin,Li Jia
Abstract
AbstractBased on the electrical characteristic detection technology, the quantitative prediction models of sensory score and physical and chemical quality Index (theaflavins, thearubigins, and theabrownins) were established by using the fermented products of Congou black tea as the research object. The variation law of electrical parameters during the process of fermentation and the effects of different standardized pretreatment methods and variable optimization methods on the models were discussed. The results showed that the electrical parameters vary regularly with the test frequency and fermentation time, and the substances that hinder the charge transfer increase gradually during the fermentation process. The Zero-mean normalization (Zscore) preprocessing method had the best noise reduction effect, and the prediction set correlation coefficient (Rp) value of the original data could be increased from 0.172 to 0.842. The mixed variable optimization method (MCUVE-CARS) of Monte Carlo uninformed variable elimination (MC UVE) and competitive adaptive reweighted sampling (CARS) was proved that the characteristic electrical parameters were the loss factor (D) and reactance (X) of the low range. Based on the characteristic variables screened by MCUVE-CARS, the quantitative prediction models for each fermentation quality indicator were established. The Rp values of the sensory score, theaflavin, thearubigin and theabrownins of the predicted models were 0.924, 0.811, 0.85 and 0.938 respectively. The relative percent deviation (RPD) values of the sensory score, theaflavins, thearubigins and theabrownins of the predicted models were 2.593, 1.517, 1,851 and 2.920 respectively, and it showed that these models have good performance and could realize quantitative characterization of key fermentation quality indexes.
Funder
Natural Science Foundation of Zhejiang Province
Special Fund for Agro-scientific Research in the Public Interest
the National Key Research and Development Program of Chin
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献