Farm use of calcium hydroxide as an effective barrier against pathogens

Author:

Matsuzaki Shinji,Azuma Kento,Lin Xuguang,Kuragano Masahiro,Uwai Koji,Yamanaka Shinya,Tokuraku Kiyotaka

Abstract

AbstractLivestock farming is affected by the occurrence of infectious diseases, but outbreaks can be prevented by proper sanitary control measures. Calcium hydroxide (Ca(OH)2), commonly called slaked lime, powder is traditionally used as a disinfectant to prevent infectious diseases in livestock. Since Ca(OH)2 can inactivate a wide variety of pathogens, has a small environmental impact, does not require a disinfection tank (i.e., can be spread directly on the ground) and is produced inexpensively worldwide, it is used for the prevention of epidemics on farms worldwide. Water is essential for the strong alkalinity that underlies its disinfecting effect, but it is unknown how much water is required under field conditions. In addition, Ca(OH)2 reacts with carbon dioxide in the environment, reducing its pH, but it is unclear how long its degradation takes under actual field use. Thus, we measured the water adsorption ability of Ca(OH)2-based disinfectants and its relation to disinfectant activity, as assessed by colony counts and live/dead staining and observation. We found that 15–20% (w/w) water in Ca(OH)2 was necessary for disinfection to occur in practice. Moreover, we found that the pH of Ca(OH)2 decreased within about two weeks to one month under actual use in practical conditions and lost its ability to disinfect. We further showed that granules prepared from Ca(OH)2 and zeolite maintained high alkalinity more than twice as long as calcium powder. These findings will help to establish a suitable method of applying Ca(OH)2 to protect farms from infectious diseases.

Funder

NARO Bio-oriented Technology Research Advancement Institution

Northern Advancement Center for Science and Technology

Muroran Advancement Center of Industrial Technology and Management

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference26 articles.

1. Food and Agriculture Organization of the United Nations. Live Animals Statistics. http://www.fao.org/faostat/en/#data/QA (2017).

2. World Animal Health Information System Interface. WAHIS Interface country information exceptional epidemiological events. https://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports (2019).

3. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

4. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

5. Muroga, N. et al. The 2010 foot-and-mouth disease epidemic in Japan. J. Vet. Med. Sci. 74, 399–404 (2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3