Prediction of essential oil content in spearmint (Mentha spicata) via near-infrared hyperspectral imaging and chemometrics

Author:

Van Haute Sam,Nikkhah Amin,Malavi Derick,Kiani Sajad

Abstract

AbstractSpearmint (Mentha spicata L.) is grown for its essential oil (EO), which find use in food, beverage, fragrance and other industries. The current study explores the ability of near infrared hyperspectral imaging (HSI) (935 to 1720 nm) to predict, in a rapid, nondestructive manner, the essential oil content of dried spearmint (0.2 to 2.6% EO). Spectral values of spearmint samples varied considerably with spatial coordinates, and so the use of averaging the spectral values of a surface scan was warranted. Data preprocessing was done with Multiplicative Scatter Correction (MSC) or Standard Normal Variate (SNV). Selection of spectral input variables was done with Least Absolute Shrinkage and Selection Operator (LASSO), Principal Component Analysis (PCA) or Partial Least Squares (PLS). Regression was executed with linear regression (LASSO, PLS regression, PCA regression), Support Vector Machine (SVM) regression, and Multilayer Perceptron (MLP). The best prediction of EO concentration was achieved with the combination of MSC or SNV preprocessing, PLS dimension reduction, and MLP regression (1 hidden layer with 6 nodes), achieving a good prediction with a ratio of performance to deviation (RPD) of 2.84 ± 0.07, an R2 of prediction of 0.863 ± 0.008, and a RMSE of prediction of 0.219 ± 0.005% EO. These results show that NIR-HSI is a viable method for rapid, nondestructive analysis of EO concentration. Future work should explore the use of NIR in the visible spectrum, the use of HSI for determining EO in other plant materials and the potential of HSI to determine individual compounds in these solid plant/food matrices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3