Ferroptosis-related factors in the substantia nigra are associated with Parkinson’s disease

Author:

Liu Lei,Cui Yange,Chang Yan-ZhongORCID,Yu PengORCID

Abstract

AbstractFerroptosis is an iron-dependent, lipid peroxidation-driven cell death pathway, while Parkinson’s disease (PD) patients exhibit iron deposition and lipid peroxidation in the brain. Thus, the features of ferroptosis highly overlap with the pathophysiological features of PD. Despite this superficial connection, the possible role(s) of ferroptosis-related (Fr) proteins in dopaminergic neurons and/or glial cells in the substantia nigra (SN) in PD have not been examined in depth. To explore the correlations between the different SN cell types and ferroptosis at the single-cell level in PD patients, and to explore genes that may affect the sensitivity of dopaminergic neurons to ferroptosis, we performed in silico analysis of a single cell RNA sequence (RNA-seq) set (GSE178265) from the Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in the different cell types in the human SN, and proceeded to perform enrichment analysis, constructing a protein–protein interaction network from the DEGs of dopaminergic neurons with the Metascape database. We examined the intersection of Fr genes present in the FerrDb database with DEGs from the GSE178265 set to identify Fr-DEGs in the different brain cells. Further, we identified Fr-DEGs encoding secreted proteins to implicate cell–cell interactions in the potential stimulation of ferroptosis in PD. The Fr-DEGs we identified were verified using the bulk RNA-seq sets (GSE49036 and GSE20164). The number of dopaminergic neurons decreased in the SN of PD patients. Interestingly, non-dopaminergic neurons possessed the fewest DEGs. Enrichment analysis of dopaminergic neurons’ DEGs revealed changes in transmission across chemical synapses and ATP metabolic process in PD. The secreted Fr-DEGs identified were ceruloplasmin (CP), high mobility group box 1 (HMGB1) and transferrin (TF). The bulk RNA-seq set from the GEO database demonstrates that CP expression is increased in the PD brain. In conclusion, our results identify CP as a potential therapeutic target to protect dopaminergic neurons by reducing neurons’ sensitivity to ferroptosis.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3