Metabolomic and Lipidomic Analysis of Manganese-Associated Parkinsonism: a Case-Control Study in Brescia, Italy

Author:

Lewis FreemanORCID,Shoieb Daniel,Azmoun SomaiyehORCID,Colicino ElenaORCID,Jin Yan,Chi Jinhua,Gu HaiweiORCID,Placidi DonatellaORCID,Padovani AlessandroORCID,Pilotto AndreaORCID,Pepe Fulvio,Turla Marinella,Crippa Patrizia,Wang XuexiaORCID,Lucchini Roberto GORCID

Abstract

AbstractBackground and ObjectivesExcessive Manganese (Mn) exposure is neurotoxic and can cause Mn-Induced Parkinsonism (MnIP), marked by cognitive and motor dysfunction. Although metabolomic and lipidomic research in Parkinsonism (PD) patients exists, it remains limited. This study hypothesizes distinct metabolomic and lipidomic profiles based on exposure status, disease diagnosis, and their interaction.MethodsWe used a case-control design with a 2×2 factorial framework to investigate the metabolomic and lipidomic alterations associated with Mn exposure and their link to PD. The study population of 97 individuals was divided into four groups: non-exposed controls (n=23), exposed controls (n=25), non-exposed with PD (n=26) and exposed with PD (n=23). Cases, defined by at least two cardinal PD features (excluding vascular, iatrogenic, and traumatic origins), were recruited from movement disorder clinics in four hospitals in Brescia, Northern Italy. Controls, free from neurological or psychiatric conditions, were selected from the same hospitals. Exposed subjects resided in metallurgic regions (Val Camonica and Bagnolo Mella) for at least 8 continuous years, while non-exposed subjects lived in low-exposure areas around Lake Garda and Brescia city. We conducted untargeted analyses of metabolites and lipids in whole blood samples using ultra-high-performance liquid chromatography (UHPLC) and mass spectrometry (MS), followed by statistical analyses including Principal Component Analysis (PCA), Partial Least Squares–Discriminant Analysis (PLS-DA), and Two-Way Analysis of Covariance (ANCOVA).ResultsMetabolomic analysis revealed modulation of alanine, aspartate, and glutamate metabolism (Impact=0.05, p=0.001) associated with disease effect; butanoate metabolism (Impact=0.03, p=0.004) with the exposure effect; and vitamin B6 metabolism (Impact=0.08, p=0.03) with the interaction effect. Differential relative abundances in 3- sulfoxy-L-Tyrosine (β=1.12, FDR p<0.001), glycocholic acid (β=0.48, FDR p=0.03), and palmitelaidic acid (β=0.30, FDR p<0.001) were linked to disease, exposure, and interaction effects, respectively. In the lipidome, ferroptosis (Pathway Lipids=11, FDR p=0.03) associated with the disease effect and sphingolipid signaling (Pathway Lipids=9, FDR p=0.04) associated with the interaction effect were significantly altered. Lipid classes triacylglycerols, ceramides, and phosphatidylethanolamines showed differential relative abundances associated with disease, exposure, and interaction effects, respectively.DiscussionThese findings suggest that PD and Mn exposure induce unique metabolomic and lipidomic changes, potentially serving as biomarkers for MnIP and warranting further study.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3