Cysteamine HCl Administration Impedes Motor and Olfactory Functions, Accompanied by a Reduced Number of Dopaminergic Neurons, in Experimental Mice: A Preclinical Mimetic Relevant to Parkinson’s Disease

Author:

Selvaraj Divya Bharathi1,Panneerselvam Anusiya2,Vergil Andrews Jemi Feiona1,Kandasamy Mahesh13ORCID

Affiliation:

1. Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India

2. Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India

3. University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi 110002, India

Abstract

Cysteamine hydrochloride (Cys-HCl) has been established as a potent ulcerogenic agent of the gastrointestinal (GI) system. GI dysfunction and olfactory deficits are the most common clinical symptoms of many movement disorders, including Parkinson’s disease (PD). Cys-HCl has been shown to interfere with dopamine, a neurotransmitter crucial for motor, olfactory, and cognitive functions. However, the reports on the effect of Cys-HCl treatment on the behavioral aspects and functions of the dopamine system appear to be inconsistent. Therefore, we revisited the impact of Cys-HCl on the motor function in experimental mice using a battery of behavioral tests, such as the pole test (PT), beam-walking test (BWT), and rotarod test (RDT), while the olfactory ability and cognitive functions were examined through the buried-food test (BFT) and Y-maze test. Furthermore, we investigated the effect of Cys-HCl on the number of dopaminergic tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and olfactory bulb (OB) of the experimental mice using immunohistochemistry. The results revealed that Cys-HCl administration in the mice induced significant impairments in their motor balance and coordination, as their movement-related performances were markedly reduced in terms of the behavioral tasks. Mice exposed to Cys-HCl showed pronounced reductions in their odor discrimination abilities as well as cognitive impairments. Strikingly, the number of TH-positive neurons was found to be reduced in the SN and OB of the Cys-HCl-treated group, which is a bonafide neuropathogenic hallmark of PD. This study highlights the potential neurotoxic effects of Cys-HCl in experimental brains and suggests further investigation into its role in the pathogenesis of Parkinsonism.

Funder

University Grants Commission Faculty Recharge Programme (UGC-FRP), New Delhi, India

RUSA 2.0 Biological Sciences, Bharathidasan University, the Anusandhan National Research Foundation (ANRF)/Science Engineering Research Board

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3