Independent control of cocontraction and reciprocal activity during goal-directed reaching in muscle space

Author:

Takagi Atsushi,Kambara Hiroyuki,Koike Yasuharu

Abstract

AbstractThe movement in a joint is facilitated by a pair of muscles that pull in opposite directions. The difference in the pair’s muscle force or reciprocal activity results in joint torque, while the overlapping muscle force or the cocontraction is related to the joint’s stiffness. Cocontraction knowingly adapts implicitly over a number of movements, but it is unclear whether the central nervous system can actively regulate cocontraction in a goal-directed manner in a short span of time. We developed a muscle interface where a cursor’s horizontal position was determined by the reciprocal activity of the shoulder flexion–extension muscle pair, while the vertical position was controlled by its cocontraction. Participants made goal-directed movements to single and via-point targets in the two-dimensional muscle space, learning to move the cursor along the shortest path. Simulations using an optimal control framework suggest that the reciprocal activity and the cocontraction may be controlled independently by the CNS, albeit at a rate orders of magnitude slower than the muscle’s maximal activation speed.

Funder

Precursory Research for Embryonic Science and Technology

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3