Optimisation of geometric aspect ratio of thin film transistors for low-cost flexible CMOS inverters and its practical implementation

Author:

van Fraassen N. C. A.,Niang K. M.,Parish J. D.,Johnson A. L.,Flewitt A. J.

Abstract

AbstractA low-cost, flexible processor is essential to realise affordable flexible electronic systems and transform everyday objects into smart-objects. Thin film transistors (TFTs) based on metal-oxides (or organics) are ideal candidates as they can be manufactured at low processing temperatures and low-cost per unit area, unlike traditional silicon devices. The development of complementary metal–oxide–semiconductor (CMOS) technology based on these materials remains challenging due to differences in performance between n- and p-type TFTs. Existing geometric rules typically compensate the lower mobility of the metal-oxide p-type TFT by scaling up the width-to-length (W/L) ratio but fail to take into account the significant off-state leakage current. Here we propose the concept of an optimal geometric aspect ratio which maximises the inverter efficiency represented by the average switching current divided by the static currents. This universal method is especially useful for the design of low-power CMOS inverters based on metal-oxides, where the large off-current of the p-type TFT dominates the static power consumption of the inverter. We model the inverter efficiency and noise margins of metal-oxide CMOS inverters with different geometric aspect ratios and compare the performance to different inverter configurations. The modelling results are verified experimentally by fabricating CMOS inverter configurations consisting of n-type indium-silicon-oxide (ISO) TFTs and p-type tin monoxide (SnO) TFTs. Notably, our results show that reducing W/L of metal-oxide p-type TFTs increases the inverter efficiency while reducing the area compared to simply scaling up W/L inversely with mobility. We anticipate this work provides a straightforward method to geometrically optimise flexible CMOS inverters, which will remain relevant even as the performance of TFTs continues to evolve.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3