Decoding of the speech envelope from EEG using the VLAAI deep neural network

Author:

Accou Bernd,Vanthornhout Jonas,hamme Hugo Van,Francart Tom

Abstract

AbstractTo investigate the processing of speech in the brain, commonly simple linear models are used to establish a relationship between brain signals and speech features. However, these linear models are ill-equipped to model a highly-dynamic, complex non-linear system like the brain, and they often require a substantial amount of subject-specific training data. This work introduces a novel speech decoder architecture: the Very Large Augmented Auditory Inference (VLAAI) network. The VLAAI network outperformed state-of-the-art subject-independent models (median Pearson correlation of 0.19, p < 0.001), yielding an increase over the well-established linear model by 52%. Using ablation techniques, we identified the relative importance of each part of the VLAAI network and found that the non-linear components and output context module influenced model performance the most (10% relative performance increase). Subsequently, the VLAAI network was evaluated on a holdout dataset of 26 subjects and a publicly available unseen dataset to test generalization for unseen subjects and stimuli. No significant difference was found between the default test and the holdout subjects, and between the default test set and the public dataset. The VLAAI network also significantly outperformed all baseline models on the public dataset. We evaluated the effect of training set size by training the VLAAI network on data from 1 up to 80 subjects and evaluated on 26 holdout subjects, revealing a relationship following a hyperbolic tangent function between the number of subjects in the training set and the performance on unseen subjects. Finally, the subject-independent VLAAI network was finetuned for 26 holdout subjects to obtain subject-specific VLAAI models. With 5 minutes of data or more, a significant performance improvement was found, up to 34% (from 0.18 to 0.25 median Pearson correlation) with regards to the subject-independent VLAAI network.

Funder

Fonds Wetenschappelijk Onderzoek

KU Leuven

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3