Classifying native versus foreign speech perception from EEG using linguistic speech features

Author:

Puffay CorentinORCID,Vanthornhout JonasORCID,Gillis MarliesORCID,De Clercq PieterORCID,Accou BerndORCID,Van hamme HugoORCID,Francart TomORCID

Abstract

AbstractWhen a person listens to natural speech, the relation between features of the speech signal and the corresponding evoked electroencephalogram (EEG) is indicative of neural processing of the speech signal. Using linguistic representations of speech, we investigate the differences in neural processing between speech in a native and foreign language that is not understood. We conducted experiments using three stimuli: a comprehensible language, an incomprehensible language, and randomly shuffled words from a comprehensible language, while recording the EEG signal of native Dutch-speaking participants. We modeled the neural tracking of linguistic features of the speech signals using a deep-learning model in a match-mismatch task that relates EEG signals to speech, while accounting for lexical segmentation features reflecting acoustic processing. The deep learning model effectively classifies languages. We also observed significant differences in tracking patterns between comprehensible and incomprehensible speech stimuli within the same language. It demonstrates the potential of deep learning frameworks in measuring speech understanding objectively.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. Bernd Accou , Mohammad Jalilpour-Monesi , Hugo Van hamme , and Tom Francart . Predicting speech intelligibility from eeg using a dilated convolutional network. ArXiv, abs/2105.06844, 2021.

2. Decoding of the speech envelope from EEG using the VLAAI deep neural network

3. Learning Subject-Invariant Representations from Speech-Evoked EEG Using Variational Autoencoders

4. Continuous speech processing

5. Rapid Transformation from Auditory to Linguistic Representations of Continuous Speech

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3