SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants

Author:

Accou Bernd12ORCID,Bollens Lies12ORCID,Gillis Marlies1ORCID,Verheijen Wendy1ORCID,Van hamme Hugo2ORCID,Francart Tom1ORCID

Affiliation:

1. Experimental Oto-Rhino-Laryngology (ExpORL), Department Neurosciences, KU Leuven, B-3001 Leuven, Belgium

2. Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), KU Leuven, B-3001 Leuven, Belgium

Abstract

Researchers investigating the neural mechanisms underlying speech perception often employ electroencephalography (EEG) to record brain activity while participants listen to spoken language. The high temporal resolution of EEG enables the study of neural responses to fast and dynamic speech signals. Previous studies have successfully extracted speech characteristics from EEG data and, conversely, predicted EEG activity from speech features. Machine learning techniques are generally employed to construct encoding and decoding models, which necessitate a substantial quantity of data. We present SparrKULee, a Speech-evoked Auditory Repository of EEG data, measured at KU Leuven, comprising 64-channel EEG recordings from 85 young individuals with normal hearing, each of whom listened to 90–150 min of natural speech. This dataset is more extensive than any currently available dataset in terms of both the number of participants and the quantity of data per participant. It is suitable for training larger machine learning models. We evaluate the dataset using linear and state-of-the-art non-linear models in a speech encoding/decoding and match/mismatch paradigm, providing benchmark scores for future research.

Funder

Research Foundation - Flanders

European Research Council

KU Leuven

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BMMSNet: Bidirectional Mapping and Multilevel Similarity Comparison for EEG-Speech Match-Mismatch Problem;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

2. ConvConcatNet: A Deep Convolutional Neural Network to Reconstruct Mel Spectrogram from the EEG;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

3. Self-Supervised Speech Representation and Contextual Text Embedding for Match-Mismatch Classification with EEG Recording;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3