Surface defect detection of hot rolled steel based on multi-scale feature fusion and attention mechanism residual block

Author:

Zhang Hongkai,Li Suqiang,Miao Qiqi,Fang Ruidi,Xue Song,Hu Qianchuan,Hu Jie,Chan Sixian

Abstract

AbstractTo improve the precision of defect categorization and localization in images, this paper proposes an approach for detecting surface defects in hot-rolled steel strips. The approach uses an improved YOLOv5 network model to overcome the issues of inadequate feature extraction capacity and suboptimal feature integration when identifying surface defects on steel strips. The proposed method achieves higher detection accuracy and localization precision, making it more competitive and applicable in real production. Firstly, the multi-scale feature fusion (MSF) strategy is utilized to fuse shallow and deep features effectively and enrich detailed information relevant to target defects. Secondly, the CSPLayer Res2Attention block (CRA block) residual module is introduced to reduce the loss of defect information during hierarchical transmission, thereby enhancing the extraction of fine-grained features and improving the perception of details and global features. Finally, the experimental results indicate that the mAP on the NEU-DET and GC10-DET datasets approaches 78.5% and 67.3%, respectively, which is 4.9% and 2.1% higher than that of the baseline. Meanwhile, it has higher precision and more precise localization capabilities than other methods. Furthermore, it also achieves 59.2% mAP on the APDDD dataset, indicating its potential for growth in further domains.

Funder

the Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of the Ministry of Education of Jilin Jianzhu University

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3