Improved YOLOv5-based for small traffic sign detection under complex weather

Author:

Qu Shenming,Yang Xinyu,Zhou Huafei,Xie Yuan

Abstract

AbstractTraffic sign detection is a challenging task for unmanned driving systems. In the traffic sign detection process, the object size and weather conditions vary widely, which will have a certain impact on the detection accuracy. In order to solve the problem of balanced detecting precision of traffic sign recognition model in different weather conditions, and it is difficult to detect occluded objects and small objects, this paper proposes a small object detection algorithm based on improved YOLOv5s in complex weather. First, we add the coordinate attention(CA) mechanism in the backbone, a light-weight yet effective module, embedding the location information of traffic signs into the channel attention to improve the feature extraction ability of the network. Second, we exploit effectively fine-grained features about small traffic signs from the shallower layers by adding one prediction head to YOLOv5s. Finally, we use Alpha-IoU to improve the original positioning loss CIoU, improving the accuracy of bbox regression. Applying this model to the recently proposed CCTSDB 2021 dataset, for small objects, the precision is 88.1%, and the recall rate is 79.8%, compared with the original YOLOv5s model, it is improved by 12.5% and 23.9% respectively, and small traffic signs can be effectively detected under different weather conditions, with low miss rate and high detection accuracy. The source code will be made publicly available at https://github.com/yang-0706/ImprovedYOLOv5s.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Rice Field Weed Control in Precision Agriculture: From Weed Recognition to Variable Rate Spraying;Agronomy;2024-08-02

2. An Enhanced Classification Technique for Mitigating Unexpected Noise Intrusions in Autonomous Vehicles;2024 IEEE Transportation Electrification Conference and Expo (ITEC);2024-06-19

3. NTS-YOLO:a nocturnal traffic sign detection method based on improved YOLOv5;2024-05-31

4. Vehicle Recognition under Autonomous Driving Based on YOLOv5;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

5. Autonomous Parking Space Detection for Electric Vehicles Based on Advanced Custom YOLOv5;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3