Intelligent Rice Field Weed Control in Precision Agriculture: From Weed Recognition to Variable Rate Spraying

Author:

Guo Zhonghui123,Cai Dongdong123,Bai Juchi123,Xu Tongyu123,Yu Fenghua1234

Affiliation:

1. School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China

2. National Digital Agriculture Regional Innovation Center (Northeast), Shenyang 110866, China

3. Key Laboratory of Smart Agriculture Technology in Liaoning Province, Shenyang 110866, China

4. Key Laboratory of Smart Agriculture in the South China Tropical Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China

Abstract

A precision agriculture approach that uses drones for crop protection and variable rate application has become the main method of rice weed control, but it suffers from excessive spraying issues, which can pollute soil and water environments and harm ecosystems. This study proposes a method to generate variable spray prescription maps based on the actual distribution of weeds in rice fields and utilize DJI plant protection UAVs to perform automatic variable spraying operations according to the prescription maps, achieving precise pesticide application. We first construct the YOLOv8n DT model by transferring the “knowledge features” learned by the larger YOLOv8l model with strong feature extraction capabilities to the smaller YOLOv8n model through knowledge distillation. We use this model to identify weeds in the field and generate an actual distribution map of rice field weeds based on the recognition results. The number of weeds in each experimental plot is counted, and the specific amount of pesticide for each plot is determined based on the amount of weeds and the spraying strategy proposed in this study. Variable spray prescription maps are then generated accordingly. DJI plant protection UAVs are used to perform automatic variable spraying operations based on prescription maps. Water-sensitive papers are used to collect droplets during the automatic variable operation process of UAVs, and the variable spraying effect is evaluated through droplet analysis. YOLOv8n-DT improved the accuracy of the model by 3.1% while keeping the model parameters constant, and the accuracy of identifying weeds in rice fields reached 0.82, which is close to the accuracy of the teacher network. Compared to the traditional extensive spraying method, the approach in this study saves approximately 15.28% of herbicides. This study demonstrates a complete workflow from UAV image acquisition to the evaluation of the variable spraying effect of plant protection UAVs. The method proposed in this research may provide an effective solution to balance the use of chemical herbicides and protect ecological safety.

Funder

Liaoning Province Applied Basic Research Program Project

National Natural Science Foundation of China

Liaoning Province’s “Xingliao Talent Plan” project

Open Project of the South China Tropical Smart Agriculture Technology Key Laboratory of the Ministry of Agriculture and Rural Affairs

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3