Target Detection of Diamond Nanostructures Based on Improved YOLOv8 Modeling

Author:

Guo Fengxiang123,Guo Xinyun1,Guo Lei1,Wang Yibao12,Wang Qinhang1,Liu Shousheng12,Zhang Mei23,Zhang Lili12,Gai Zhigang12

Affiliation:

1. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 250316, China

2. National Engineering and Technological Research Center of Marine Monitoring Equipment, Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology, Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 250316, China

3. Laoshan Laboratory, Qingdao 250316, China

Abstract

Boron-doped diamond thin films exhibit extensive applications in chemical sensing, in which the performance could be further enhanced by nano-structuring of the surfaces. In order to discover the relationship between diamond nanostructures and properties, this paper is dedicated to deep learning target detection methods. However, great challenges, such as noise, unclear target boundaries, and mutual occlusion between targets, are inevitable during the target detection of nanostructures. To tackle these challenges, DWS-YOLOv8 (DCN + WIoU + SA + YOLOv8n) is introduced to optimize the YOLOv8n model for the detection of diamond nanostructures. A deformable convolutional C2f (DCN_C2f) module is integrated into the backbone network, as is a shuffling attention (SA) mechanism, for adaptively tuning the perceptual field of the network and reducing the effect of noise. Finally, Wise-IoU (WIoU)v3 is utilized as a bounding box regression loss to enhance the model’s ability to localize diamond nanostructures. Compared to YOLOv8n, a 9.4% higher detection accuracy is achieved for the present model with reduced computational complexity. Additionally, the enhancement of precision (P), recall (R), mAP@0.5, and mAP@0.5:0.95 is demonstrated, which validates the effectiveness of the present DWS-YOLOv8 method. These methods provide effective support for the subsequent understanding and customization of the properties of surface nanostructures.

Funder

National Nature Science Foundation of China

National Key R&D Program of China

Special Wenhai Plan of Qingdao National Laboratory for Marine Science and Technology

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3