Profiling Covid-19 patients with respect to level of severity: an integrated statistical approach

Author:

Cugnata Federica,Scarale Maria Giovanna,De Lorenzo Rebecca,Simonini Marco,Citterio Lorena,Querini Patrizia Rovere,Castagna Antonella,Di Serio Clelia,Lanzani Chiara

Abstract

AbstractA full understanding of the characteristics of Covid-19 patients with a better chance of experiencing poor vital outcomes is critical for implementing accurate and precise treatments. In this paper, two different advanced data-driven statistical approaches along with standard statistical methods have been implemented to identify groups of patients most at-risk for death or severity of respiratory distress. First, the tree-based analysis allowed to identify profiles of patients with different risk of in-hospital death (by Survival Tree-ST analysis) and severity of respiratory distress (by Classification and Regression Tree-CART analysis), and to unravel the role on risk stratification of highly dependent covariates (i.e., demographic characteristics, admission values and comorbidities). The ST analysis identified as the most at-risk group for in-hospital death the patients with age > 65 years, creatinine $$\ge$$ 1.2 mg/dL, CRP $$\ge$$ 25 mg/L and anti-hypertensive treatment. Based on the CART analysis, the subgroups most at-risk of severity of respiratory distress were defined by patients with creatinine level $$\ge$$ 1.2 mg/dL. Furthermore, to investigate the multivariate dependence structure among the demographic characteristics, the admission values, the comorbidities and the severity of respiratory distress, the Bayesian Network analysis was applied. This analysis confirmed the influence of creatinine and CRP on the severity of respiratory distress.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3