Inferring the energy sensitivity and band gap of electronic transport in a network of carbon nanotubes

Author:

Tang Shuang

Abstract

AbstractSince the industrialization of single-phase nanomaterial-based devices is still challenging, intensive research focus has been given to complex materials consisting of multiple nanoscale entities, including networks and matrices of nanowires, nanotubes, nanoribbons, or other large molecules; among these complex materials, networks of carbon nanotubes are a typical example. Detailed knowledge of the energy sensitivity and band gap of electronic transport in such a material system is difficult to detect, despite its importance in electronic, energetic and sensing applications. Here, we propose a new methodology to obtain these quantities using the measured Seebeck coefficient at a certain temperature but different Fermi levels. We discover that the network consisting of semiconducting (11,10)-carbon nanotubes actually exhibits metallic transport at room temperature. It is also interesting to verify that intrananotube ballistic transport is dominant over diffusive scattering by long-range disorder, as well as the quantum hopping resistance at the contact points. The transport asymmetry ratio between the holes and electrons (1.75) is similar to the value observed in pristine graphene samples (1.50).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3