Abstract
Abstract
We propose a divide-and-conquer algorithm to find recursively the scattering matrix of general tight-binding structures. The scattering matrix allows a direct calculation of transport properties in mesoscopic systems by using the Landauer formula. The method is exact, and by analyzing the performance of the algorithm in square, triangular and honeycomb lattices, we show a significant improvement in comparison to other state-of-the-art recursive and non-recursive methods. We utilize this algorithm to compute the conductance of a rotated graphene nanoribbon side-contact junction, revealing that for electrons with energies smaller than −2.7 eV the transmission function depends negligibly on the angle of the junction, whereas for electrons with energies greater than −2.7 eV, there exists a set of angles for the system that increase its conductance independently of the energy of the particles.
Subject
Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献