Multi-volume hemacytometer

Author:

Thunyaporn Ravangnam,Doh Il,Lee Dong Woo

Abstract

AbstractCell counting has become an essential method for monitoring the viability and proliferation of cells. A hemacytometer is the standard device used to measure cell numbers in most laboratories which are typically automated to increase throughput. The principle of both manual and automated hemacytometers is to calculate cell numbers with a fixed volume within a set measurement range (105 ~ 106 cells/ml). If the cell concentration of the unknown sample is outside the range of the hemacytometer, the sample must be prepared again by increasing or decreasing the cell concentration. We have developed a new hemacytometer that has a multi-volume chamber with 4 different depths containing different volumes (0.1, 0.2, 0.4, 0.8 µl respectively). A multi-volume hemacytometer can measure cell concentration with a maximum of 106 cells/ml to a minimum of 5 × 103 cells/ml. Compared to a typical hemacytometer with a fixed volume of 0.1 µl, the minimum measurable cell concentration of 5 × 103 cells/ml on the multi-volume hemacytometer is twenty times lower. Additionally, the Multi-Volume Cell Counting model (cell concentration calculation with the slope value of cell number in multi-chambers) showed a wide measurement range (5 × 103 ~ 1 × 106 cells/ml) while reducing total cell counting numbers by 62.5% compared to a large volume (0.8 µl-chamber) hemacytometer.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference14 articles.

1. Au Ongena, K. et al. Determining cell number during cell culture using the scepter cell counter. JoVE 45, e2204 (2010).

2. Briggs, C. Quality counts: New parameters in blood cell counting. Int. J. Lab. Hematol. 31(3), 277–297 (2009).

3. Ates, A. H. et al. Total white blood cell count is associated with the presence, severity and extent of coronary atherosclerosis detected by dual-source multislice computed tomographic coronary angiography. Cardiol. J. 18(4), 371–377 (2011).

4. Lu, H. et al. High throughput single cell counting in droplet-based microfluidics. Sci. Rep. 7(1), 1366 (2017).

5. Phillips, E. A. et al. Microfluidic rapid and autonomous analytical device (microRAAD) to detect HIV from whole blood samples. Lab Chip 19(20), 3375–3386 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3