Cost-effective detection of genome-wide signatures for 2,4-D herbicide resistance adaptation in red clover

Author:

Benevenuto Juliana,Bhakta Mehul,Lohr Daniel A.,Ferrão Luís Felipe V.,Resende Marcio F. R.,Kirst Matias,Quesenberry Kenneth,Munoz Patricio

Abstract

AbstractHerbicide resistance is a recurrent evolutionary event that has been reported across many species and for all major herbicide modes of action. The synthetic auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used since the 1940s, however the genetic variation underlying naturally evolving resistance remains largely unknown. In this study, we used populations of the forage legume crop red clover (Trifolium pratense L.) that were recurrently selected for 2,4-D resistance to detect genome-wide signatures of adaptation. Four susceptible and six derived resistant populations were sequenced using a less costly approach by combining targeted sequencing (Capture-Seq) with pooled individuals (Pool-Seq). Genomic signatures of selection were identified using: (i) pairwise allele frequency differences; (ii) genome scan for overly differentiated loci; and (iii) genome‐wide association. Fifty significant SNPs were consistently detected, most located in a single chromosome, which can be useful for marker assisted selection. Additionally, we searched for candidate genes at these genomic regions to gain insights into potential molecular mechanisms underlying 2,4-D resistance. Among the predicted functions of candidate genes, we found some related to the auxin metabolism, response to oxidative stress, and detoxification, which are also promising for further functional validation studies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3