The Evolution and Genetics of Herbicide Resistance in Weeds

Author:

Jasieniuk Marie,Brûlé-Babel Anita L.,Morrison Ian N.

Abstract

The importance of various factors influencing the evolution of herbicide resistance in weeds is critically examined using population genetic models. The factors include gene mutation, initial frequency of resistance alleles, inheritance, weed fitness in the presence and absence of herbicide, mating system, and gene flow. Where weed infestations are heavy, the probability of selecting for resistance can be high even when the rate of mutation is low. Subsequent to the occurrence of a resistant mutant, repeated treatments with herbicides having the same mode of action can lead to the rapid evolution of a predominantly resistant population. At a given herbicide selection intensity, the initial frequency of resistance alleles determines the number of generations required to reach a specific frequency of resistant plants. The initial frequency of resistance alleles has a greater influence on the evolutionary process when herbicides impose weak selection, as opposed to very strong selection. Under selection, dominant resistance alleles increase in frequency more rapidly than recessive alleles in random mating or highly outcrossing weed populations. In highly self-fertilizing species, dominant and recessive resistance alleles increase in frequency at approximately the same rate. Gene flow through pollen or seed movement from resistant weed populations can provide a source of resistance alleles in previously susceptible populations. Because rates of gene flow are generally higher than rates of mutation, the time required to reach a high level of resistance in such situations is greatly reduced. Contrary to common misconception, gene flow from a susceptible population to a population undergoing resistance evolution is unlikely to slow the evolutionary process significantly. Accurate measurements of many factors that influence resistance evolution are difficult, if not impossible, to obtain experimentally. Thus, the use of models to predict times to resistance in specific situations is markedly limited. However, with appropriate assumptions, they can be invaluable in assessing the relative effectiveness of various management practices to avoid, or delay, the occurrence of herbicide resistance in weed populations.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 447 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3