Expression and Variation of the Genes Involved in Rhizobium Nodulation in Red Clover

Author:

Dinkins Randy D.ORCID,Hancock Julie A.,Bickhart Derek M.,Sullivan Michael L.ORCID,Zhu Hongyan

Abstract

Red clover (Trifolium pratense L.) is an important forage crop and serves as a major contributor of nitrogen input in pasture settings because of its ability to fix atmospheric nitrogen. During the legume-rhizobial symbiosis, the host plant undergoes a large number of gene expression changes, leading to development of root nodules that house the rhizobium bacteria as they are converted into nitrogen-fixing bacteroids. Many of the genes involved in symbiosis are conserved across legume species, while others are species-specific with little or no homology across species and likely regulate the specific plant genotype/symbiont strain interactions. Red clover has not been widely used for studying symbiotic nitrogen fixation, primarily due to its outcrossing nature, making genetic analysis rather complicated. With the addition of recent annotated genomic resources and use of RNA-seq tools, we annotated and characterized a number of genes that are expressed only in nodule forming roots. These genes include those encoding nodule-specific cysteine rich peptides (NCRs) and nodule-specific Polycystin-1, Lipoxygenase, Alpha toxic (PLAT) domain proteins (NPDs). Our results show that red clover encodes one of the highest number of NCRs and ATS3-like/NPDs, which are postulated to increase nitrogen fixation efficiency, in the Inverted-Repeat Lacking Clade (IRLC) of legumes. Knowledge of the variation and expression of these genes in red clover will provide more insights into the function of these genes in regulating legume-rhizobial symbiosis and aid in breeding of red clover genotypes with increased nitrogen fixation efficiency.

Funder

United States Department of Agriculture USDA—ARS CRIS project

Non-Assistance Cooperative Agreement

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3