Transformation of foldable robotic hand to scissor-like shape for pinching based on human hand movement

Author:

Ikeda Hidetoshi,Saeki Takumi

Abstract

AbstractIncreasing the number of degrees of freedom for multi-finger robotic hands is necessary to achieve high performance. However, this increases structural complexity and the obtained improvement may be small. Humans change the shape of their hands by extending or bending the fingers to apply force to an object through contact with a wide surface or two or more fingers. In some cases, continuous finger movements are not necessary or some fingers do not make contact with the object. A robotic hand with a small number of degrees of freedom could effectively use its fingers to perform many tasks by properly arranging the fingers, increasing the movable range of joints, and utilizing the back and sides of the fingers. This paper proposes a hand system and conducts a theoretical analysis of the transformation of the hand shape into a scissor-like motion to handle a cylindrical object. It is found that the scissor-like motion is unsuitable for cylindrical objects that exceed a certain size. Experiments show the effectiveness of the proposed hand system. The correlation between the contact position of a finger with an object and the success ratio of pinching is demonstrated. Furthermore, a control system that can switch from pinching to grasping when the robot judges that pinching is difficult is developed and experimentally validated.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3