Neural correlates of individual variation in two-back working memory and the relationship with fluid intelligence

Author:

Li Guangfei,Chen Yu,Le Thang M.,Wang Wuyi,Tang Xiaoying,Li Chiang-Shan R.

Abstract

AbstractWorking memory has been examined extensively using the N-back task. However, less is known about the neural bases underlying individual variation in the accuracy rate (AR) and reaction time (RT) as metrics of N-back performance. Whereas AR indexes the overall performance, RT may more specifically reflect the efficiency in updating target identify. Further, studies have associated fluid intelligence (Gf) with working memory, but the cerebral correlates shared between Gf and N-back performance remain unclear. We addressed these issues using the Human Connectome Project dataset. We quantified the differences in AR (critical success index or CSI) and RT between 2- and 0-backs (CSI2–0 and RT2–0) and identified the neural correlates of individual variation in CSI2–0, RT2–0, and Gf, as indexed by the number of correct items scored in the Raven’s Standard Progressive Matrices (RSPM) test. The results showed that CSI2–0 and RT2–0 were negatively correlated, suggesting that a prolonged response time did not facilitate accuracy. At voxel p < 0.05, FWE-corrected, the pre-supplementary motor area (preSMA), bilateral frontoparietal cortex (biFPC) and right anterior insula (rAI) showed activities in negative correlation with CSI2–0 and positive correlation with RT2–0. In contrast, a cluster in the dorsal anterior cingulate cortex (dACC) bordering the SMA showed activities in positive correlation with CSI2–0 and negative correlation with RT2–0. Further, path analyses showed a significant fit of the model dACC → RT2–0 → CSI2–0, suggesting a critical role of target switching in determining performance accuracy. Individual variations in RT2–0 and Gf were positively correlated, although the effect size was small (f2 = 0.0246). RT2–0 and Gf shared activities both in positive correlation with the preSMA, biFPC, rAI, and dorsal precuneus. These results together suggest inter-related neural substrates of individual variation in N-back performance and highlight a complex relationship in the neural processes supporting 2-back and RSPM performance.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3