Author:
Jung Jae Kap,Lee Ji Hun,Jang Jin Sub,Chung Nak Kwan,Park Chang Young,Baek Un Bong,Nahm Seung Hoon
Abstract
AbstractWe demonstrate a simple experimental technology for characterizing the gas permeation properties of H2, He, N2 and Ar absorbed in polymers. This is based on the volumetric measurement of released gas and an upgraded diffusion analysis program after high-pressure exposure. Three channel measurements of sorption content of gases emitted from polymers after decompression are simultaneously conducted, and then, the gas uptake/diffusivity as a function of exposed pressure are determined in nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM) rubbers, low-density polyethylene (LDPE) and high-density polyethylene (HDPE), which are used for gas sealing materials under high pressure. The pressure-dependent gas transport behaviors of the four gases are presented and compared. Gas sorption follows Henry’s law up to 9 MPa, while pressure-dependent diffusion behavior is not observed below 6 MPa. The magnitude of the diffusivity of the four gases decreases in the order DHe > DH2 > DAr > DN2 in all polymers, closely related to the kinetic diameter of the gas molecules. The dependence of gas species on solubility is in contrast to that on diffusivity. The linear correlation between logarithmic solubility and critical temperature of the gas molecule was newly observed.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献