Review of Developed Methods for Measuring Gas Uptake and Diffusivity in Polymers Enriched by Pure Gas under High Pressure

Author:

Jung Jae Kap1ORCID

Affiliation:

1. Hydrogen Energy Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea

Abstract

Gas emission and diffusion through polymeric materials play crucial roles in ensuring safety and monitoring gas concentrations in technology and industry. Especially, the gas permeation characteristics for O-ring material should be investigated for sealing application in a hydrogen infrastructure. To accommodate the requirements of different environments, we first developed four complementary effective methods for measuring the gas absorption uptake from polymers enriched by pure gas under high pressure and determining the gas diffusivity. The methods included the gravimetric method, the volumetric method, the manometric method, and gas chromatography, which are based on mass, volume, pressure, and volume measurements, respectively. The representative investigated results of the developed methods, such as gas uptake, solubility, and diffusivity are demonstrated. The measuring principles, measuring procedures, measured results, and the characteristics of the methods are compared. Finally, the developed methods can be utilized for testing transport properties, such as the leakage and sealing ability, of rubber and O-ring material under high pressure for hydrogen fueling stations and gas industry.

Funder

the Korea Research Institute of Standards and Science

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3