Concrete Gas Permeability: Implications for Hydrogen Storage Applications

Author:

Abreu Araujo Luana1ORCID,Rebolledo Ramos Nuria1,Torres Martín Julio Emilio1ORCID,Chinchón-Payá Servando1ORCID,Sánchez Montero Javier1ORCID,Lample Carreras Rosa Maria2,Vera-Agullo Jose2,Jimenez-Vicaria Jose David2ORCID

Affiliation:

1. Department of Reinforcement Corrosion and Structural Safety, Eduardo Torroja Institute for Construction Science—CSIC, 28033 Madrid, Spain

2. Acciona Construcción, S.A., 28108 Alcobendas, Spain

Abstract

Concrete is widely utilized across various industries as a containment material. One essential property related to its performance is permeability, which determines its ability to allow the passage of gases or liquids through its pores and capillaries and even the transmission of aggressive agents. This study focused on investigating the permeability of gases with varying atomic weights and molecular volumes, such as helium, nitrogen, oxygen, and argon, to pass through concrete. The primary objective was to determine the significance of variation in permeability and to evaluate and differentiate their behavior. To achieve this, concrete test specimens were employed, and factors such as cold joint impact, gas pressure, and specimen saturation levels were considered. Throughout the study, changes in weight, specimen humidity, resistivity, and ultrasonic pulse velocity were monitored. The findings suggested that within concrete, the variation in permeability for these gases is negligible. By utilizing the acquired data, the present study estimated the permeability of hydrogen through mathematical models based on gas pressure and concrete thickness. These insights contribute to a deeper comprehension of concrete gas permeability and its potential impact on improving hydrogen containment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3