Segmentation of void defects in X-ray images of chip solder joints based on PCB-DeepLabV3 algorithm

Author:

Kong Defeng,Hu Xinyu,Gong Ziang,Zhang Daode

Abstract

AbstractDefects within chip solder joints are usually inspected visually for defects using X-ray imaging to obtain images. The phenomenon of voids inside solder joints is one of the most likely types of defects in the soldering process, and accurate detection of voids becomes difficult due to their irregular shapes, varying sizes, and defocused edges. To address this problem, an X-ray void image segmentation algorithm based on improved PCB-DeepLabV3 is proposed. Firstly, to meet the demand for lightweight and easy deployment in industrial scenarios, mobilenetv2 is used as the feature extraction backbone network of the PCB-DeepLabV3 model; then, Attentional multi-scale two-space pyramid pooling network (AMTPNet) is designed to optimize the shallow feature edges and to improve the ability to capture detailed information; finally, image cropping and cleaning methods are designed to enhance the training dataset, and the improved PCB-DeepLabV3 is applied to the training dataset. The improved PCB-DeepLabV3 model is used to segment the void regions within the solder joints and compared with the classical semantic segmentation models such as Unet, SegNet, PSPNet, and DeeplabV3. The proposed new method enables the solder joint void inspection to get rid of the traditional way of visual inspection, realize intelligent upgrading, and effectively improve the problem of difficult segmentation of the target virtual edges, to obtain the inspection results with higher accuracy.

Funder

National Natural Science Foundation of China

Hubei Province Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3