Author:
Zhang Qianru,Zhang Meng,Gamanayake Chinthaka,Yuen Chau,Geng Zehao,Jayasekara Hirunima,Woo Chia-wei,Low Jenny,Liu Xiang,Guan Yong Liang
Abstract
AbstractWith the improvement of electronic circuit production methods, such as reduction of component size and the increase of component density, the risk of defects is increasing in the production line. Many techniques have been incorporated to check for failed solder joints, such as X-ray imaging, optical imaging and thermal imaging, among which X-ray imaging can inspect external and internal defects. However, some advanced algorithms are not accurate enough to meet the requirements of quality control. A lot of manual inspection is required that increases the specialist workload. In addition, automatic X-ray inspection could produce incorrect region of interests that deteriorates the defect detection. The high-dimensionality of X-ray images and changes in image size also pose challenges to detection algorithms. Recently, the latest advances in deep learning provide inspiration for image-based tasks and are competitive with human level. In this work, deep learning is introduced in the inspection for quality control. Four joint defect detection models based on artificial intelligence are proposed and compared. The noisy ROI and the change of image dimension problems are addressed. The effectiveness of the proposed models is verified by experiments on real-world 3D X-ray dataset, which saves the specialist inspection workload greatly.
Funder
china scholarship council
keysight technologies
Key R&D Program of China
Natural Science Foundation of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献