Nutritional evaluation and transcriptome analyses of short-time germinated seeds in soybean (Glycine max L. Merri.)

Author:

Hu Wei,Liu Xiaoxue,Xiong Yajun,Liu Tingxuan,Li Zhan,Song Jian,Wang Jun,Wang Xianzhi,Li Xiaofang

Abstract

AbstractGermination is a common practice for nutrition improvement in many crops. In soybean, the nutrient value and genome-wide gene expression pattern of whole seeds germinated for short-time has not been fully investigated. In this study, protein content (PC), water soluble protein content (WSPC), isoflavone compositions were evaluated at 0 and 36 h after germination (HAG), respectively. The results showed that at 36HAG, PC was slightly decreased (P > 0.05) in ZD41, J58 and JHD, WSPC and free isoflavone (aglycones: daidzein, genistein, and glycitein) were significantly increased (P < 0.05), while total isoflavone content was unchanged. Transcriptomic analysis identified 5240, 6840 and 15,766 DEGs in different time point comparisons, respectively. GO and KEGG analysis showed that photosynthesis process was significantly activated from 18HAG, and alternative splicing might play an important role during germination in a complex manner. Response to hydrogen peroxide (H2O2) was found to be down regulated significantly from 18 to 36HAG, suggesting that H2O2 might play an important role in germination. Expression pattern analysis showed the synthesis of storage proteins was slowing down, while the genes coding for protein degradation (peptidase and protease) were up regulated as time went by during germination. For genes involved in isoflavone metabolism pathway, UGT (7-O-glucosyltransferase) coding genes were significantly up regulated (40 up-DEGs vs 27 down-DEGs), while MAT (7-O-glucoside-6′′-O-malonyltransferase) coding genes were down regulated, which might explain the increase of aglycones after germination. This study provided a universal transcriptomic atlas for whole soybean seeds germination in terms of nutrition and gene regulation mechanism.

Funder

Open Fund of Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education

Jingzhou Science and Technology Plan Project

National Natural Science Foundation of China

Natural Science Foundation of Yunnan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3