Author:
Margara Francesca,Psaras Yiangos,Wang Zhinuo Jenny,Schmid Manuel,Doste Ruben,Garfinkel Amanda C.,Repetti Giuliana G.,Seidman Jonathan G.,Seidman Christine E.,Rodriguez Blanca,Toepfer Christopher N.,Bueno-Orovio Alfonso
Abstract
AbstractCardiomyopathies have unresolved genotype–phenotype relationships and lack disease-specific treatments. Here we provide a framework to identify genotype-specific pathomechanisms and therapeutic targets to accelerate the development of precision medicine. We use human cardiac electromechanical in-silico modelling and simulation which we validate with experimental hiPSC-CM data and modelling in combination with clinical biomarkers. We select hypertrophic cardiomyopathy as a challenge for this approach and study genetic variations that mutate proteins of the thick (MYH7R403Q/+) and thin filaments (TNNT2R92Q/+, TNNI3R21C/+) of the cardiac sarcomere. Using in-silico techniques we show that the destabilisation of myosin super relaxation observed in hiPSC-CMs drives disease in virtual cells and ventricles carrying the MYH7R403Q/+ variant, and that secondary effects on thin filament activation are necessary to precipitate slowed relaxation of the cell and diastolic insufficiency in the chamber. In-silico modelling shows that Mavacamten corrects the MYH7R403Q/+ phenotype in agreement with hiPSC-CM experiments. Our in-silico model predicts that the thin filament variants TNNT2R92Q/+ and TNNI3R21C/+ display altered calcium regulation as central pathomechanism, for which Mavacamten provides incomplete salvage, which we have corroborated in TNNT2R92Q/+ and TNNI3R21C/+ hiPSC-CMs. We define the ideal characteristics of a novel thin filament-targeting compound and show its efficacy in-silico. We demonstrate that hybrid human-based hiPSC-CM and in-silico studies accelerate pathomechanism discovery and classification testing, improving clinical interpretation of genetic variants, and directing rational therapeutic targeting and design.
Funder
Horizon 2020
Engineering and Physical Sciences Research Council
British Heart Foundation
Wellcome Trust
National Institutes of Health
National Centre for the Replacement, Refinement and Reduction of Animals in Research
BHF Centre of Research Excellence, Oxford
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献