Author:
Jhan Li-Hsin,Yang Chin-Ying,Huang Chih-Min,Lai Mu-Chien,Huang Yen-Hsiang,Baiya Supaporn,Kao Chung-Feng
Abstract
AbstractSoybean is highly sensitive to flooding and extreme rainfall. The phenotypic variation of flooding tolerance is a complex quantitative trait controlled by many genes and their interaction with environmental factors. We previously constructed a gene-pool relevant to soybean flooding-tolerant responses from integrated multiple omics and non-omics databases, and selected 144 prioritized flooding tolerance genes (FTgenes). In this study, we proposed a comprehensive framework at the systems level, using competitive (hypergeometric test) and self-contained (sum-statistic, sum-square-statistic) pathway-based approaches to identify biologically enriched pathways through evaluating the joint effects of the FTgenes within annotated pathways. These FTgenes were significantly enriched in 36 pathways in the Gene Ontology database. These pathways were related to plant hormones, defense-related, primary metabolic process, and system development pathways, which plays key roles in soybean flooding-induced responses. We further identified nine key FTgenes from important subnetworks extracted from several gene networks of enriched pathways. The nine key FTgenes were significantly expressed in soybean root under flooding stress in a qRT-PCR analysis. We demonstrated that this systems biology framework is promising to uncover important key genes underlying the molecular mechanisms of flooding-tolerant responses in soybean. This result supplied a good foundation for gene function analysis in further work.
Funder
NCHU-KU Joint Research Project
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献