Author:
Czapla Tomasz,Fice Marcin,Niestrój Roman
Abstract
AbstractSince the wheel interaction with a certain terrain cases (asphalt, concrete) are known and well described in case of straightforward motion and non-slip and slip cornering conditions, the skid-steered wheeled vehicles case needs to be analyzed. Side-slip for various attack angle has to be investigated. The main area of interest of research that is shown in the project is energy demand calculation of skid-steered wheeled vehicles in various terrain conditions. Certain cases of all-electric vehicles with individual electric motors per wheel demand a precise assessment of longitudinal and lateral forces in order to perform the fully controlled turn. Experimental stand designed and developed by authors allows to test the wheel-surface interaction for various terrain conditions and different driving directions. Test data were acquired for dry and wet sand and granite pavement. Traction and side forces were acquired and used to identify the wheel-soil interaction model parameters for unpropelled wheel. Results in a form of time series including longitudinal and lateral forces show the relation between attack angle, load and surface conditions in terms of stick and slip phenomenon that is essential for skid-steering dynamics calculations. Measurement results are then used for calculation of longitudinal and lateral forces coefficients as a function of attack angle and vertical load. Test were performed in natural environment, thus they are affected by changeable conditions. Multiple runs are used for elimination of that influence. Described experiments are a part of the project that includes results generalization using test validated FEM model. Described work is not intended to develop new ground-tire interaction models, it is focused on numerically efficient traction effort calculation method for various conditions including passive mode—unpropelled wheel.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Andrzejewski, R. & Awrejcewicz, J. Nonlinear Dynamics of a Wheeled Vehicle 205 (Springer, 2006).
2. Wong, J. Y. Theory of Ground Vehicles (Wiley, 2001).
3. Sharma, A. K. & Pandey, K. P. A review on area measurement of pneumatic tyre on rigid and deformable surfaces. J. Terramech. 33(5), 253–264 (1997).
4. Collins, J. G. Forecasting Trafficability of Soil. Technical Memo 3-331 (USA Corps of Engineers Waterways Experiment Station, 1971).
5. Herrick, E.J., Jones, T.L. A dynamic cone penetrometer for measuring soil penetration resistance. (2002).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献