Study on the Surface Generation Mechanism during Ultra-Precision Parallel Grinding of SiC Ceramics

Author:

Chen Shanshan12,Yang Shuming1,Cheung Chi Fai3ORCID,Liu Tao1,Duan Duanzhi1,Ho Lai-ting3,Jiang Zhuangde1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China

2. Research Institute of Xi’an Jiaotong University, Hangzhou 311200, China

3. State Key Laboratory of Ultra-Precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China

Abstract

Silicon carbide (SiC) is a typical, difficult-to-machine material that has been widely used in the fabrication of optical elements and structural and heat-resistant materials. Parallel grinding has been frequently adopted to produce a high-quality surface finish. Surface generation is a vital issue for assessing surface quality, and extensive modeling has been developed. However, most of the models were based on a disc wheel with a cylindrical surface, whereas the surface topography generation based on an arc-shaped tool has been paid relatively little attention. In this study, a new theoretical model for surface generation in ultra-precision parallel grinding has been established by considering the arc-shaped effect, synchronous vibration of the wheel, and cutting profile interference in the tool feed direction. Finally, the ground surface generation mechanism and grinding ductility were analyzed in the grinding of SiC ceramics. The results showed that the spiral and straight-line mode vibration patterns were the main feature of the machined surface, and its continuity was mainly affected by the phase shift. Furthermore, for the in-phase shift condition, the grinding ductility was more significant than for the out-of-phase shift due to the continuously decreasing relative linear speed between the wheel and workpiece.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

National Key R&D Program of China “strategic science and technology innovation cooperation” project

China Postdoctoral Science Foundation

Key Research and Development Program of Shaanxi Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3