Author:
Lu Ang,Yuan Shi-meng,Xiao Huai,Yang Da-song,Ai Zhi-qiong,Li Qi-Yan,Zhao Yu,Chen Zhuang-zhi,Wu Xiu-mei
Abstract
AbstractPhenolic compounds (PCs) could be applied to reduce reactive oxygen species (ROS) levels, and are used to prevent and treat diseases related to oxidative stress. QSAR study was applied to elucidate the relationship between the molecular descriptors and physicochemical properties of polyphenol analogues and their DPPH radical scavenging capability, to guide the design and discovery of highly-potent antioxidant substances more efficiently. PubMed database was used to collect 99 PCs with antioxidant activity, whereas, 105 negative PCs were found in ChEMBL database; their molecular descriptors were generated with Python's Rdkit package. While the molecular descriptors significantly related to the antioxidant activity of PCs were filtered by t-test. The prediction QSAR model was then established by discriminant analysis, and the obtained model was verified by the back-substitution and Leave-One-Out cross-validation methods along with heat map. It was revealed that the anti-DPPH radical activity of PCs was correlated with the drug-likeness and molecular fingerprints, physicochemical, topological, constitutional and electronic property. The established QSAR model could explicitly predict the antioxidant activity of polyphenols, thus were applicable to evaluate the potential of candidates as antioxidants.
Funder
The National Natural Science Fund of China
Innovation Team of Dali University for Advanced Pharmaceutics of Entomological Bio-pharmacy R&D
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献