Author:
Sajeev Vaishnavi,Rane Shreeya,Ghosh Debal,Acharyya Nityananda,Roy Choudhury Palash,Mukherjee Arnab,Roy Chowdhury Dibakar
Abstract
AbstractBecause of extraordinary optoelectronic properties, two-dimensional (2D) materials are the subject of intense study in recent times. Hence, we investigate sub-wavelength dipole cavities (hole array) as a sensing platform for the detection of 2D reduced graphene oxide (r-GO) using terahertz time-domain spectroscopy (THz-TDS). The r-GO is obtained by reducing graphene oxide (GO) via Hummer's method. Its structural characteristics are verified using X-ray diffraction (XRD) and Raman spectroscopy. We also assessed the morphology and chemistry of r-GO nanosheets by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), and Fourier Transformed Infrared (FTIR) spectroscopy. Further, we studied the surface plasmon resonance (SPR) characteristics of r-GO nanosheets hybridized dipole cavities using THz-TDS by varying the r-GO thickness on top of the dipole cavities, since these cavities are well known for sustaining strong SPRs. Based on these, we experimentally obtained a sensitivity of 12 GHz/µm for the porous r-GO film. Thus, a modification in SPR characteristics can be employed towards the identification and quantification of r-GO by suitably embedding it on an array of dipole cavities. Moreover, we have adopted a generic approach that can be expanded to sense other 2D materials like Boron Nitride (BN), phosphorene, MoS2, etc., leading to the development of novel THz nanophotonic sensing devices.
Funder
Board of Research in Nuclear Sciences
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献