Thin film sensing near exceptional point utilizing terahertz plasmonic metasurfaces

Author:

K N Indu Krishna,Roy Chowdhury DibakarORCID

Abstract

Abstract Non-Hermitian quantum systems along with engineered metasurfaces enable a versatile podium for sensor designs from industrial to medical sectors. The singularity points known as exceptional points (EPs) can be realized in such non-Hermitian systems. EP demonstrates a square root topology on minute perturbations, hence promising to be a potential candidate to sense external parameters, such as temperature, thermal fluctuations, refractive index, and biomolecules. Hence, in this work, through numerical and analytical investigations, we explore the sensing capabilities in the vicinity of EP utilizing suitably designed terahertz metasurfaces. Here, we propose a non-Hermitian metasystem comprising two orthogonally twisted square split ring resonators coupled by near-field Electromagnetic interactions that can exhibit dark-bright modes. In such a system, the presence of an active (photo-doped) material in the split gap of one of the resonators opens up an effective avenue to introduce controllable asymmetric losses, ultimately leading to the emergence of EPs in the polarization space. Hence, thin film sensing at the proximity of the emerged EP is investigated for different refractive indices by coating with an overlayer atop the metasurface. In such a configuration, the sensitivities of the eigenstates are calculated in terms of the refractive index unit, which turns out to be −0.044 THz RIU−1 and −0.063 THz RIU−1 when the system is perturbed near EP. Our proposed metasurface-inspired EP-based sensing strategy can open up novel ways to sense the refractive index of unknown materials besides other physical parameters.

Funder

SERB

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3