Advances in Metasurface‐Based Terahertz Sensing

Author:

Zhao Jing1,Zhang Lei1,Liang Huawei23ORCID

Affiliation:

1. Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China

2. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province Shenzhen University Shenzhen 518060 P. R. China

3. Shenzhen Key Laboratory of Laser Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China

Abstract

AbstractTerahertz (THz) technology has attracted significant attention because of its unique applications in biological/chemical sensing, medical imaging, non‐invasive detection, and high‐speed communication. Metasurfaces provide a dynamic platform for THz sensing applications, showcasing greater flexibility in design and the ability to optimize light‐matter interactions for specific target enhancements, which includes enhancing the intramolecular and intermolecular vibration modes of the target biological/chemical molecules, setting them apart from conventional approaches. This review focuses on recent THz metasurface sensing methods, including metasurfaces based on toroidal dipole and quasi‐bound states in the continuum to improve sensing sensitivity, nanomaterial‐assisted metasurfaces for specific recognition, and metasurfaces combined with microfluidic with reduce water absorption loss. Furthermore, the applications of THz metasurface sensing is reviewed, including detecting the concentration of biomolecules, cells, tissues, and microbes, THz biomolecular fingerprint absorption spectra recognition, and identifying chiral compounds using chiral and achiral metasurfaces. Finally, the prospects for the next generation of THz sensors are examined.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3