Author:
Sen Rajannya,Zhdanov Alexander V.,Bastiaanssen Thomaz F. S.,Hirvonen Liisa M.,Svihra Peter,Fitzgerald Patrick,Cryan John F.,Andersson-Engels Stefan,Nomerotski Andrei,Papkovsky Dmitri B.
Abstract
Abstract
O2 PLIM microscopy was employed in various studies, however current platforms have limitations in sensitivity, image acquisition speed, accuracy and general usability. We describe a new PLIM imager based on the Timepix3 camera (Tpx3cam) and its application for imaging of O2 concentration in various tissue samples stained with a nanoparticle based probe, NanO2-IR. Upon passive staining of mouse brain, lung or intestinal tissue surface with minute quantities of NanO2-IR or by microinjecting the probe into the lumen of small or large intestine fragments, robust phosphorescence intensity and lifetime signals were produced, which allow mapping of O2 in the tissue within 20 s. Inhibition of tissue respiration or limitation of O2 diffusion to tissue produced the anticipated increases or decreases in O2 levels, respectively. The difference in O2 concentration between the colonic lumen and air-exposed serosal surface was around 140 µM. Furthermore, subcutaneous injection of 5 µg of the probe in intact organs (a paw or tail of sacrificed mice) enabled efficient O2 imaging at tissue depths of up to 0.5 mm. Overall, the PLIM imager holds promise for metabolic imaging studies with various ex vivo models of animal tissue, and also for use in live animals.
Funder
Science Foundation Ireland
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献