Author:
Golub Aleksander S.,Pittman Roland N.
Abstract
In phosphorescence quenching microscopy (PQM), the multiple excitation of a reference volume produces the integration of oxygen consumption artifacts caused by individual flashes. We analyzed the performance of two types of PQM instruments to explain reported data on Po2in the microcirculation. The combination of a large excitation area (LEA) and high flash rate produces a large oxygen photoconsumption artifact manifested differently in stationary and flowing fluids. A LEA instrument strongly depresses Po2in a motionless tissue, but less in flowing blood, creating an apparent transmural Po2drop in arterioles. The proposed model explains the mechanisms responsible for producing apparent transmural and longitudinal Po2gradients in arterioles, a Po2rise in venules, a hypothetical high respiration rate in the arteriolar wall and mesenteric tissue, a low Po2in lymphatic microvessels, and both low and uniform tissue Po2. This alternative explanation for reported paradoxical results of Po2distribution in the microcirculation obviates the need to revise the dominant role of capillaries in oxygen transport to tissue. Finding a way to eliminate the photoconsumption artifact is crucial for accurate microscopic oxygen measurements in microvascular networks and tissue. The PQM technique that employs a small excitation area (SEA) together with a low flash rate was specially designed to avoid accumulated oxygen photoconsumption in flowing blood and lymph. The related scanning SEA instrument provides artifact-free Po2measurements in stationary tissue and motionless fluids. Thus the SEA technique significantly improves the accuracy of microscopic Po2measurements in the microcirculation using the PQM.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献