Changes in Oxygen Delivery during experimental models of Cerebral Malaria

Author:

Jani Vinay P.1,Williams Alexander T.,Carvalho Leonardo2,Cabrales Pedro1

Affiliation:

1. University of California, San Diego

2. Instituto Oswaldo Cruz

Abstract

Abstract Cerebral malaria (CM) is a severe manifestation of malaria that commonly occurs in children and is hallmarked by neurologic symptoms and significant Plasmodium falciparum parasitemia. It is currently hypothesized that cerebral hypoperfusion from impaired microvascular oxygen transport secondary to parasitic occlusion of the microvasculature is responsible for cerebral ischemia and thus disease severity. Animal models to study CM, are known as experimental cerebral malaria (ECM), and include the C57BL/6J infected with Plasmodium berghei ANKA (PbA), which is ECM-susceptible, and BALB/c infected with PbA, which is ECM-resistant. Here we sought to investigate whether changes in oxygen (O2) delivery, O2 flux, and O2 utilization are altered in both these models of ECM using phosphorescence quenching microscopy (PQM) and direct measurement of microvascular hemodynamics using the cranial window preparation. Animal groups used for investigation consisted of ECM-susceptible C57BL/6 (Infected, n = 14) and ECM-resistant BALB/c (Infected, n = 9) mice. Uninfected C57BL/6 (n = 6) and BALB/c (n = 6) mice were included as uninfected controls. Control animals were manipulated in the exact same way as the infected mice (except for the infection itself). C57BL/6 ECM animals at day 6 of infection were divided into two cohorts: Early-stage ECM, presenting mild to moderate drops in body temperature (> 34 < 36°C) and Late-stage ECM, showing marked drops in body temperature (< 33°C). Data were analyzed using a general linear mixed model. We constructed three general linear mixed models, one for total O2 content, another for total O2 delivery, and the third for total O2 content as a function of convective flow. We found that in both the ECM-susceptible C57BL/6J model and ECM-resistant BALB/c model of CM, convective and diffusive O2 flux along with pial hemodynamics are impaired. We further show that concomitant changes in p50 (oxygen partial pressure for 50% hemoglobin saturation), only 5 mmHg in the case of late-stage CM C57BL/6J mice, and O2 diffusion result in insufficient O2 transport by the pial microcirculation, and that both these changes are required for late-stage disease. In summary, we found impaired O2 transport and O2 affinity in late-stage ECM, but only the former in either early-stage ECM and ECM-resistant strains.

Publisher

Research Square Platform LLC

Reference27 articles.

1. Pathogenesis, clinical features, and neurological outcome of cerebral malaria;Idro R;The Lancet Neurology,2005

2. Severe anaemia in childhood cerebral malaria is associated with profound coma;Idro R;African health sciences,2003

3. Pathophysiology of severe malaria in children;Maitland K;Acta tropica,2004

4. Perfusion abnormalities in children with cerebral malaria and malarial retinopathy;Beare NA;The Journal of infectious diseases,2009

5. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study;Pongponratn E;The American journal of tropical medicine and hygiene,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3