Industrial camera model positioned on an effector for automated tool center point calibration

Author:

Konecny Jaromir,Beremlijski Petr,Bailova Michaela,Machacek Zdenek,Koziorek Jiri,Prauzek Michal

Abstract

AbstractThe study presents a novel, full model of an industrial camera suitable for robotic manipulator tool center point (TCP) calibration. The authors propose a new solution which employs a full camera model positioned on the effector of an industrial robotic arm. The proposed full camera model simulates the capture of a calibration pattern for use in automated TCP calibration. The study describes an experimental test robot stand for producing a reference data set, a full camera model, the parameters of a generally known camera obscura model, and a comparison of proposed solution with the camera obscura model. The results are discussed in the context of an innovative approach which features a full camera model to assist the TCP calibration process. The results showed that the full camera model produced greater accuracy, a significant benefit not provided by other state-of-the-art methods. In several cases, the absolute error produced was up to seven times lower than with the state-of-the-art camera obscura model. The error for small rotation (max. of 5$$^\circ $$ ) and small translation (max. of 20 mm) was 3.65 pixels. The results also highlighted the applicability of the proposed solution in real-life industrial processes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3