Dip effect on the orientation of rock failure plane under combined compression–shear loading

Author:

Sun Lijun,Li Pengcheng,Luo Binyu,Liu Xiaoyun,Huang Tengda,Su Yuan

Abstract

AbstractShear failure often occurs in engineering rock mass (such as inclined pillar) in gently inclined strata. Prediction and characterization the orientation of shear failure plane is the foundation of rock mass engineering reinforcement. In this paper, sandstone samples are used to perform uniaxial and shear tests to obtain the basic mechanical parameters. Then, by employing the numerical method, the combined compression–shear loading tests were carried out for inclined specimens varied from 0° to 25° at an interval of 5°, to obtain the dip effect on the orientation of rock failure plane. The results show that the failure plane of rock changes with the change of dip angle of rock sample. Based on the Mohr–Coulomb criterion, the ultimate stress state of rock was characterized under combined compression–shear loading. The ultimate strength of rock is equal to the ratio of the stress circle radius of rock under combined compression–shear condition to the stress circle radius of rock under uniaxial compression condition, multiplied by the uniaxial compressive strength. The fracture angle of rock was defined under combined compression–shear loading. A theoretical model was developed for predicting the fracture angle. The developed model could be characterized by internal friction angle, dip angle of rock sample and Poisson's ratio. Finally, the numerical results of the fracture angle were analyzed, which are consistent with the predicted results of the model. The investigation shows that the rock fracture angle has a dip effect, which decreases with the increase of the inclination angle of the sample. The research results provide a new means to identify the potential failure plane of engineering rock mass, and lay a theoretical foundation for calculating the orientation of rock fracture plane.

Funder

Financial support from the State Key Laboratory of Safety and Health for Metal Mines

The Young Scientists Project of the National Key R&D Plan of the 14th Five Year Plan

The Knowledge Innovation Project in Wuhan

The Special fund project for production safety of Hubei Provincial Department of Emergency Management

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3