Experimental study on the interrelation of multiple mechanical parameters in overburden rock caving process during coal mining in longwall panel

Author:

Deng Daixin,Wang HongweiORCID,Xie Lili,Wang Zeliang,Song Jiaqi

Abstract

AbstractIn order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the significant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identified as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine.

Funder

State Key Research Development Program of China

Independent Research fund of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining

National Natural Science Foundation of China

Beijing Natural Science Foundation

the Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Reference58 articles.

1. Alejano LR, Taboada J, García-Bastante F, Rodriguez P (2008) Multi-approach back-analysis of a roof bed collapse in a mining room excavated in stratified rock. Int J Rock Mech Min Sci 45(6):899–913

2. Amini M, Sarfaraz H, Esmaeili K (2018) Stability analysis of slopes with a potential of slide-head-toppling failure. Int J Rock Mech Min Sci 112:108–121

3. Bai QS, Tu SH, Wang FT, Zhang C (2017) Field and numerical investigations of gateroad system failure induced by hard roofs in a longwall top coal caving face. Int J Coal Geol 173:176–199

4. Chen DD, He FL, Xie SR, Zeng JC (2019) Time-space relationship between periodic fracture of plate structure of main roof and rebound in whole region with elastic foundation boundary. Chin J Rock Mech Eng 38(06):1172–1187

5. Cheng ZB, Kong DZ, Yang JH (2016) The breaking characteristics of thick hard roof and determination of support capacity in fully mechanized caving face. J Min Sci Technol 1(2):172–180

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3