Age-aware constitutive materials model for a 3D printed polymeric foam

Author:

Maiti A.,Small W.,Lewicki J. P.,Chinn S. C.,Wilson T. S.,Saab A. P.

Abstract

Abstract Traditional open or closed-cell stochastic elastomeric foams have wide-ranging applications in numerous industries: from thermal insulation, shock absorbing/gap-filling support cushions, packaging, to light-weight structural and positional components. Recent developments in 3D printing technologies by direct ink-write have opened the possibility of replacing stochastic foam parts by more controlled printed micro-structures with superior stress-distribution and longer functional life. For successful deployment as mechanical support or structural components, it is crucial to characterize the response of such printed materials to long-term external loads in terms of stress-strain behavior evolution and in terms of irreversible structural and load-bearing capacity changes over time. To this end, here we report a thermal-age-aware constitutive model for a 3D printed close-packed foam structure under compression. The model is based on the Ogden hyperfoam strain-energy functional within the framework of Tobolsky two-network scheme. It accurately describes experimentally measured stress-strain response, compression set, and load retention for various aging times and temperatures. Through the technique of time-temperature-superposition the model enables the prediction of long-term changes along with the quantification of uncertainty stemming from sample-to-sample variation and measurement noise. All aging parameters appear to possess the same Arrhenius activation barrier, which suggests a single dominant aging mechanism at the molecular/network level.

Funder

LLNL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3