Author:
Maiti A.,Small W.,Lewicki J. P.,Chinn S. C.,Wilson T. S.,Saab A. P.
Abstract
Abstract
Traditional open or closed-cell stochastic elastomeric foams have wide-ranging applications in numerous industries: from thermal insulation, shock absorbing/gap-filling support cushions, packaging, to light-weight structural and positional components. Recent developments in 3D printing technologies by direct ink-write have opened the possibility of replacing stochastic foam parts by more controlled printed micro-structures with superior stress-distribution and longer functional life. For successful deployment as mechanical support or structural components, it is crucial to characterize the response of such printed materials to long-term external loads in terms of stress-strain behavior evolution and in terms of irreversible structural and load-bearing capacity changes over time. To this end, here we report a thermal-age-aware constitutive model for a 3D printed close-packed foam structure under compression. The model is based on the Ogden hyperfoam strain-energy functional within the framework of Tobolsky two-network scheme. It accurately describes experimentally measured stress-strain response, compression set, and load retention for various aging times and temperatures. Through the technique of time-temperature-superposition the model enables the prediction of long-term changes along with the quantification of uncertainty stemming from sample-to-sample variation and measurement noise. All aging parameters appear to possess the same Arrhenius activation barrier, which suggests a single dominant aging mechanism at the molecular/network level.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Gibson, I., Rosen, D. W. & Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer, New York (2015).
2. Duoss, E. B. et al. Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness. Adv. Func. Matter. 24, 4905–4913 (2014).
3. Gibson, L. J. & Ashby, M. E. Cellular Solids: Structure and properties. Cambridge University Press, UK (1997).
4. Mills, N. Polymer Foams Handbook. Elsevier Science (2007).
5. Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F. & Wadley, H. N. G. The Topological Design of Multifunctional Cellular Materials. Prog. Mater. Sci. 46, 309–327 (2001).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献