Simulation Analysis of Equibiaxial Tension Tests for Rubber-like Materials

Author:

Luo Huaan12,Zhu Yinlong3ORCID,Zhao Haifeng12,Ma Luqiang1,Zhang Jingjing1

Affiliation:

1. School of Intelligent Manufacturing, Nanjing Vocational College of Information Technology, Nanjing 210023, China

2. Jiangsu Robot Micro Servo Engineering Research Center, Nanjing 210023, China

3. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

For rubber-like materials, there are three popular methods of equibiaxial tension available: inflation tension, equibiaxial planar tension, and radial tension. However, no studies have addressed the accuracy and comparability of these tests. In this work, we model the tension tests for a hyperelastic electroactive polymer (EAP) membrane material using finite element method (FEM) and investigate their experimental accuracy. This study also analyzes the impact of apparatus structure parameters and specimen dimensions on experimental performances. Additionally, a tensile efficiency is proposed to assess non-uniform deformation in equibiaxial planar tension and radial tension tests. The sample points for calculating deformation in inflation tensions should be taken near the top of the inflated balloon to obtain a more accurate characteristic curve; the deformation simulation range will be constrained by the material model and its parameters within a specific limit (λ ≈ 1.9); if the inflation hole size is halved, the required air pressure must be doubled to maintain equivalent stress and strain values, resulting in a reduction in half in inflation height and decreased accuracy. The equibiaxial planar tension test can enhance uniform deformation and reduce stress errors to as low as 2.1% (at λ = 4) with single-corner-point tension. For circular diaphragm specimens in radial tension tests, increasing the number of cuts and using larger punched holes results in more uniform deformation and less stress error, with a minimum value of 3.83% achieved for a specimen with 24 cuts and a 5 mm punched hole. In terms of tensile efficiency, increasing the number of tensile points in the equibiaxial planar tension test can improve it; under radial tension, increasing the number of cuts and decreasing the diameter of the punched hole on the specimen has a hedging effect. The findings of this study are valuable for accurately evaluating various equibiaxial tension methods and analyzing their precision, as well as providing sound guidance for the effective design of testing apparatus and test plans.

Funder

the Doctoral Fundation of Nanjing Vocational College of Information Technology of China

the National Key Laboratory of Science and Technology on Helicopter Transmission

the Natural Science Research Projects in Jiangsu Universities of China

the High Level Talent Project of “Six Talent Peaks” in Jiangsu Province of China

the Open Project of the National Key Laboratory of Robotics of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3